Perm-seq: Mapping Protein-DNA Interactions in Segmental Duplication and Highly Repetitive Regions of Genomes with Prior-Enhanced Read Mapping
نویسندگان
چکیده
Segmental duplications and other highly repetitive regions of genomes contribute significantly to cells' regulatory programs. Advancements in next generation sequencing enabled genome-wide profiling of protein-DNA interactions by chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq). However, interactions in highly repetitive regions of genomes have proven difficult to map since short reads of 50-100 base pairs (bps) from these regions map to multiple locations in reference genomes. Standard analytical methods discard such multi-mapping reads and the few that can accommodate them are prone to large false positive and negative rates. We developed Perm-seq, a prior-enhanced read allocation method for ChIP-seq experiments, that can allocate multi-mapping reads in highly repetitive regions of the genomes with high accuracy. We comprehensively evaluated Perm-seq, and found that our prior-enhanced approach significantly improves multi-read allocation accuracy over approaches that do not utilize additional data types. The statistical formalism underlying our approach facilitates supervising of multi-read allocation with a variety of data sources including histone ChIP-seq. We applied Perm-seq to 64 ENCODE ChIP-seq datasets from GM12878 and K562 cells and identified many novel protein-DNA interactions in segmental duplication regions. Our analysis reveals that although the protein-DNA interactions sites are evolutionarily less conserved in repetitive regions, they share the overall sequence characteristics of the protein-DNA interactions in non-repetitive regions.
منابع مشابه
Discovering Transcription Factor Binding Sites in Highly Repetitive Regions of Genomes with Multi-Read Analysis of ChIP-Seq Data
Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is rapidly replacing chromatin immunoprecipitation combined with genome-wide tiling array analysis (ChIP-chip) as the preferred approach for mapping transcription-factor binding sites and chromatin modifications. The state of the art for analyzing ChIP-seq data relies on using only reads that map uniquely to a relev...
متن کاملCharacterizing regions in the human genome unmappable by next-generation-sequencing at the read length of 1000 bases
Repetitive and redundant regions of a genome are particularly problematic for mapping sequencing reads. In the present paper, we compile a list of the unmappable regions in the human genome based on the following definition: hypothetical reads with length 1 kb which cannot be uniquely mapped with zero-mismatch alignment for the described regions, considering both the forward and reverse strand....
متن کاملPolyCat: A Resource for Genome Categorization of Sequencing Reads From Allopolyploid Organisms
Read mapping is a fundamental part of next-generation genomic research but is complicated by genome duplication in many plants. Categorizing DNA sequence reads into their respective genomes enables current methods to analyze polyploid genomes as if they were diploid. We present PolyCat-a pipeline for mapping and categorizing all types of next-generation sequence data produced from allopolyploid...
متن کاملA Gibbs sampling strategy applied to the mapping of ambiguous short-sequence tags
MOTIVATION Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is widely used in biological research. ChIP-seq experiments yield many ambiguous tags that can be mapped with equal probability to multiple genomic sites. Such ambiguous tags are typically eliminated from consideration resulting in a potential loss of important biological information. RESULTS We have de...
متن کاملPerM: efficient mapping of short sequencing reads with periodic full sensitive spaced seeds
MOTIVATION The explosion of next-generation sequencing data has spawned the design of new algorithms and software tools to provide efficient mapping for different read lengths and sequencing technologies. In particular, ABI's sequencer (SOLiD system) poses a big computational challenge with its capacity to produce very large amounts of data, and its unique strategy of encoding sequence data int...
متن کامل